Beadwork, Polyhedra

Hyparhedra Update

About two years ago I posted about Archimedean Edge Hyparhedra – Archimedean polyhedra made by placing warped squares over the edges of the polyhedra. At that point I’d completed 3 of the 13 polyhedra, and started 3 more. I thought it was about time for an update on my progress on this series – I now have 7 of them completed!

The original 3 are in the middle – the green truncated octahedron, the black and white cuboctahedron (this one ends up looking more like its dual shape, the rhombic dodecahedron) and the blue and brown truncated tetrahedron. The new shapes are, anticlockwise from the lower right, the white, red and blue snub cube (which also ends up looking more like its dual, the pentagonal icositetrahedron), the white, brown and red rhombicosidodecahedron, the brown and red truncated icosahedron and the blue and black truncated cube.

Here’s a close up of the snub dodecahedron. This one is a really interesting shape, and it’s also a chiral polyhedron – it looks different reflected in a mirror – so I might make a mirror image to match when I eventually finish this series! Because of the angle of the edges of this polyhedron the warped squares end up curving the wrong way to form surface, so it ends up inside out and looking like its dual shape like the cuboctahedron.

The rhombicosidodecahedron however workd really well with the warped squares! It took me a while to finish this one as it was a lot of squares (120!) but I’m really pleased with how it turned out.

I’ve made a similar shape to this before, the rhombicosidodecahedron hyparhedron variation, which uses warped hexagons in place of the white triangular faces.

The truncated icosidodecahedron turned out really well too. It didn’t take quite as long as it’s only 60 squares, but was still a bit of a marathon. I really like this shape though, it was one of the very first ones I started and I’m really glad to have finished it at last.

The last shape, the truncated cube, was more challenging. The problem with this one is that it has octogonal faces, which need 8 warped squares to join together. Unfortunately, 8 warped squares joined together are not flat or concave, but instead start to ruffle and concertina and don’t make a very good interpretation of a flat shape – here’s my initial attempt::

It just wasn’t going to work, but I realised that if I used 2-drop peyote on the parts of the warped square that join into the octagons then they would be more pointy and the shape would be more concave rather than starting to ruffle like above. Fortunately this worked, and made an interesting shape!

The 2-drop octagons really give it a different character to the other shapes:

I was wondering how I would do the 4 Archimedean solids which have octagon and decagon faces, as I didn’t think they would work with the normal warped squares, so I’m glad I’ve found a solution and can now make the other 3 – a truncated cuboctahedron, a truncated dodecahedron and a truncated icosidodecahedron.

That leaves me with the snub dodecahedron and rhombicuboctahedron to do with the normal 1-drop warped squares, both of which are in progress. I think the snub dodecahedron will end up like the snub cube and cuboctahedron, looking more like its dual. I’m not sure about the rhombicuboctahedron yet, it could go either way or not work at all, and might have to be done with the 2-drop method instead. Hopefully it will take me less than 2 years this time to complete the set!

Beadwork, Polyhedra

Johnson Solid J40

Here is my contribution to the UK Johnson Solid Project – number 40, an elongated pentagonal orthocupolarotunda!

This one is quite a bit smaller than the J68 I made for the US project, but still took me a while to make as it has a lot of components. There are 15 triangles, 15 squares and 7 pentagons in total, and it is made up of a pentagonal cupola (which is Johnson solid number 5) and a pentagonal rotunda (Johnson solid number 6) joined together by a decagonal prism (essentially a ring of ten squares around the middle).

The J68 I made also has a pentagonal cupola as part of the shape (this is a decagonal face made up of a pentagon surrounded by squares and triangles) so I thought it would be nice to use the same colours to highlight the connection between them and the two projects.

The shape is interesting as it looks completely different from different sides. I really like the pentagonal rotunda side (a partial icosidodecahedron made from pentagons and triangles) as well.

I really glad that I got to make a second Johnson Solid for the UK project – it’s been fun making a piece that’s very different to the other shape!

Beadwork, Polyhedra

Sunburst Variation

Here’s a variation on my Sunburst dodecahedron from a while back. Unfortunately it wasn’t very sunny when I tried to photograph it though!

It’s made in the same way with Sue Harle’s diagonal tubular peyote technique, but the construction is a bit different. Here it is side by side with the original version:

The difference is where the outward points are on each side – in the original they are in the middle of the edges of the polyhedron, while in the variation they are at the vertices. I really like the contrast between the two shapes!

This technique is so flexible – which means I have a lot more polyhedra like this planned!

Beadwork, International Beading Week, Polyhedra, Tutorials

Interlinked Tetrahedra Tutorials

Five Colour Interlinked Tetrahedra

The original five colour version of the bugle bead interlinked tetrahedra is available here as a pdf: Five Colour Interlinked Tetrahedra Tutorial. This version uses a different colour for each individual tetrahedron.

Three Colour Interlinked Tetrahedra

A three colour version of the interlinked tetrahedra tutorial is available here: Three Colour Interlinked Tetrahedra Tutorial. This version uses three different colours of bugles in each tetrahedron.

The animations above were made using Stella4D Pro.

Kits

Kits for both versions are available in my etsy shop!

BeadMechanics_InterlinkedTetra_Kit3

Happy Beading!

BeadMechanics_InterlinkedTetrahedra

Beadwork, Polyhedra, Tutorials

New Tutorial: Rhombic Mosaic

A new tutorial is available in my Etsy shop for the Rhombic Mosaic icosahedron! This icosahedron is Not Made From Triangles! Instead it uses peyote diamonds for a new take on this basic geometric shape!

BeadMechanics_RhombicMosaic2

This method of making an icosahedron means than you get distinct triangular faces rather than the diamond shaped faces you get if you use triangles. Here’s a comparison of two – Rhombic Mosiac is on the left and an icosahedron made from peyote triangles on the right:

BeadMechanics_RhombicMosaic3

I really like the effect this construction method gives! I started working on this idea last year with my initial Not Made From Triangles tetrahedron:

BeadMechanics_NotMadeWithTriangles2  BeadMechanics_NotMadeWithTriangles1

Since then I’ve tried a few other shapes as well – here is a Not Made From Triangles octahedron along with the triangle version:

BeadMechanics_RhombicMosaic4

I really enjoy making polyhedra using this method and have a number of other shapes already planned!

The pattern in the tutorial uses five different colours for the faces of the icosahedron and has every possible combination of each five at each vertex exactly once. Both colourways are in the tutorial too!

Happy Beading!

BeadMechanics_RhombicMosaic1

Beadwork, Polyhedra

Augmented Truncated Dodecahedron J68

A little while ago I wrote about the Beaded Johnson Solids Project set up by Diane Fitzgerald, a project to make all 92 Johnson solids out of beads. I volunteered to make number 68, the Augmented Truncated Dodecahedron. After a lot of time spent making decagons here it is!

BeadMechanics_J68_1

I’ve named the beadwork version Reflecting Pool. In total it’s made from 11 decagons, 1 pentagon, 5 squares and 25 triangles. To give a better idea of the shape here’s an animation of the polyhedron made using Stella4D Pro:

J68

Here’s the net of the beadwork shape before it the final assembly. I think it looks like a series of connected pools, which is where the name Reflecting Pool came from.

BeadMechanics_J68_Net

Before I started joining the beadwork net together I did a trial run with a paper model – fortunately my beadwork skills are better than my papercraft skills!

BeadMechanics_J68_PaperModel

I really like how the shape turned out. The decagons seem quite sensitive to even the small size variations in the beads and so ended up slightly concave rather than as flat as the ones I made initially. However, I really like how they end up looking when joined together.

BeadMechanics_J68_2

I’m tempted to make a plain truncated dodecahedron, with just decagons and triangles, however it might have to wait a while until I manage to make 12 more decagons!

BeadMechanics_J68_3

 

Beadwork, Polyhedra

Augmented Dodecahedron

Making polyhedra using round beads and polyhedral angle weave is my current favourite bead technique! Here’s an augmented dodecahedron made using 4mm beads:

BeadMechanics_Dodecahedron1

This is a dodecahedron with extra dodecahedra added to each face (augmentation). In theory there should be a slight gap between each neighbouring dodecahedron, but with the beadwork you can merge them together to end up with this shape.

It did require quite a lot of concentration to weave but it was still an enjoyable experiment. I’m definitely going to be trying more shapes like this!

BeadMechanics_Dodecahedron2

 

Beadwork, Polyhedra

Near-Miss Johnson Solids

The Johnson solids are strictly convex polyhedra with regular polyhedra as faces – that is polygons with sides and angles that are all the same. Near-miss Johnson solids however are strictly convex polyhedra that almost have regular polyhedra as faces, but not quite. There are actually a lot of interesting polyhedra that meet this definition. And since they are almost regular you can try making them using same sized beads and let the beadwork distort slightly to make up for the slight differences needed.

Here are a few of them made with illusion cord and 4 mm beads using “polyhedral angle weave” (which is just regular angle weave used to make the various polygons that make up a polyhedron).

BeadMechanics_JSNearMiss11

The first one is a truncated triakis tetrahedron, which has 12 pentagon and 4 hexagon faces:

BeadMechanics_JSNearMiss2

This was easy to make and only needs 42 beads. It’s fairly small and makes a nice little beaded bead!

The next is a chamfered dodecahedron. This is similar to a truncated icosahedron but with ten more hexagons:

BeadMechanics_JSNearMiss4

This one has 120 beads and works really well. It’s a bit bigger than a truncated icosahedron and looks very round, definitely one of my favourites!

The third is a rectified truncated icosahedron. This is basically a truncated icosahedron with triangles added between all the faces:

BeadMechanics_JSNearMiss6

This one has 180 beads and is less round but is still an interesting shape!

The next is an expanded truncated icosahedron, which is sort of like a truncated icosahedron version of a rhombicosidodecahedron. It has triangle, square, pentagon and hexagon faces:

BeadMechanics_JSNearMiss7

This has a lot more beads – 360 in total – and is much bigger than the others. It was a struggle to keep it looking reasonably symmetric, but the patterns made up by the combination of pentagons or hexagons surrounded by triangles and squares are really quite pretty.

The last one is a snub rectified truncated icosahedron and is like a truncated icosahedron version of a snub dodecahedron. It’s made up from triangles, pentagons and hexagons:

BeadMechanics_JSNearMiss10

This is larger still at 450 beads and does not work well at all! The faces are just too far away from regular to work with identical beads and it just wasn’t possible to get it to be symmetric. Well, not all experiments work! I’ll definitely be making some of the smaller ones again though!

 

Beadwork, Polyhedra

Rhombic Dodecahedron

Here’s a fun shape – a rhombic dodecahedron made from warped hexagons and octagons. I wasn’t sure how well this was going to work, but I really like the way each face looks like a slightly folded square. A rhombic dodecahedron has twelve diamond-shaped faces, so I knew it wouldn’t look completely symmetric and it’s interesting to see how it’s turned out!

Rhombic_Dodecahedron_Vertex_Hyparhedron_Verrier_BeadMechanics

I also really like the colour of these green delicas – I don’t use green very often but glad I did this time! I was also very relieved that inclusion of a few matte delicas (the row of brown beads) did not result in disaster! I’m always a bit wary of matte beads since they seem to break very easily, but treated with a lot of care they worked out well.

I started this about 2 years ago just before a move but it got left forgotten afterwards for most of that time. Decided it was about time to finish it last summer! It’s quite similar to the Hypernova dodecahedron in some ways – both are what I’m going to call vertex-hyparhedra, because they are based on the idea of placing higher-order hypars over the vertices of a polyhedron. I think I’m going to start calling the other beadwork hyparhedra edge-hyparhedra (as they involves putting hypars over the edges), and Erik Demain’s original method face-hyparhedra (as it involves putting hypars over the faces of polyhedra).

Rhombic_Dodecahedron_Vertex_Hyparhedron2_Verrier_BeadMechanics

Whatever it’s called it’s definitely an odd little shape, but I like it!

Beadwork, Polyhedra

The Beaded Johnson Solids Project

The peyote octagon and decagon make it possible to bead a lot of polyhedra. For example here’s a truncated cube – one of the Archimedean solids – made using triangles and octagons:

TruncatedCube_BeadMechanics

It’s a fun shape – I think it looks like it’s made of flowers!

As well as the Archimedean solids it’s also now possible to make all the Johnson solids, and Diane Fitzgerald has set up a project to do just that!

The Johnson solids are all the strictly convex, regular polyhedra that aren’t uniform. A convex polyhedron is one that has no “valleys” on it’s surface, like the truncated cube above. Strictly convex means that flat surfaces formed by polyhedrons don’t count as convex either – so a polyhedron that is essentially a cube with each square face split up into four smaller squares would not be strictly convex, since the larger square made from the four smaller ones would be flat. Regular just means that the polyhedra are made from regular polygons, which have equal angles and sides. A uniform polyhedron is a regular polyhedron that has identical vertices – that is, each vertex is made of the same combination of faces meeting in the same order and at the same angles. The Platonic solids, Archimedean solids, prisms and antiprisms are all uniform convex polyhedra. All the other non-uniform regular convex polyhedra make up the Johnson solids.

There are exactly 92 of these shapes, and they were first listed by Norman Johnson in 1966 in the paper Convex polyhedra with regular faces (Canadian Journal of Mathematics, 18, 169). This list was then proved to be complete shortly afterwards by Vicktor Zalgaller (Convex polyhedra with regular faces, Seminars in Mathematics Volumne 2, V. A. Steklov Mathematical Institute 1966, English translation: Consultants Bureau, 1969). They’re numbered as J1 through to J92, and each has it’s own (often very long!) name. Although there are 92 different shapes they’re all combinations of just triangles, squares, pentagons, hexagons, octagons or decagons!

Diane’s project is a call to beaders internationally to join in making the 92 Johnson solids out of flat peyote shapes, just for the fun of it! Once complete they will be strung in order and be available for display.

If you volunteer for the project you get to pick the shape you want to make (and then give a beadwork name to!) and you’ll get a (free!) copy of the instructions for the basic shapes and a guide on how to make the Johnson solids. It’s a great opportunity to learn some new beading skills! There’s a facebook group for the project here, or you can contact Diane directly for more information.

At the moment more than half the shapes are in progress or complete. Here are some photos of a few of the finished polyhedra!

 

InaHascher_J5_J16

J5 and J16 by Ina Hascher

 

VeePretorius_J13_J59

J13 and J59 by Vee Pretorius

 

MariaCristinaGrifone_J46

J46 by Maria Cristina Grifone

 

DianeFitzgerald_J57

J57 by Diane Fitzgerald

 

NancyJenner_J58

J58 by Nancy Kooyers Jenner

 

CarolRomanoGeraghty_J63

J63 by Carol Romano Geraghty

 

SylviaLamborg_J91

J91 by Sylvia Lambourg

 

GerlindeLenz_J92

J92 by Gerlinde Lenz

They’re all fascinating and beautiful! Here’s the complete set of Johnson Solids, J1 through to J92 in order left to right, then top to bottom. Please join in and bead one!

JohnsonSolids2